The Security Challenges In The World Of Internet Of Things

D. Janet Ramya¹, Dr. L. Arockiam²

¹Research Scholar in Computer Science, St. Joseph's College(Autonomous), [Affiliated to Bharathidasan University] Tiruchirappalli, Tamilnadu, India.

²Associate Professor in Computer Science St. Joseph's College(Autonomous), [Affiliated to Bharathidasan University] Tiruchirappalli, Tamilnadu, India.

Abstract:

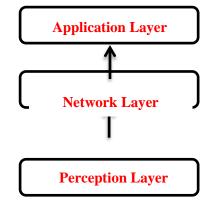
The Internet of Things (IoT) spans a vast network of numerous smart devices be it simple or complex. They regularly exchange data over the Internet. The momentous growth of IoT as a new technological paradigm exposes many secure-critical operations and sensitive data online. So, security of the device, its operations and data are equally at risk. This paper studies the various security issues in the IoT environment. The IoT architecture is prone to many design-level, service-level, network-level and application-level threats. Possible attacks and countermeasures have been summarized layer wise to visualise the big picture. Thus, provides better awareness of the risk of security blemishes and also may protect and safeguard the IoT environment.

Keywords – Security, Internet of Things, Architecture.

I. INTRODUCTION

The Internet of Things (IoT) is a dynamic worldwide network architecture with automatic configuring capabilities based on standard and interoperable communication protocols in which physical and virtual "things" have their own identities, physical characteristics, employ intelligent interfaces, and virtual behaviours and are seamlessly linked into the information network, and frequently transfer data related with users and their environments^[1]. It comprises of physical and virtual things or objects which have unique identities when connected to the internet to make a 'smarter' environment. IoT is a fast-growing technology which is gaining momentum day by day and it is driven by many technologies which complement it such as sensor networks, wireless communication, mobile devices, cloud technologies and networking. The Gartner's Hype cycle^[2] anticipates that there would be more than 25 billion uniquely identifiable objects in the forthcoming global networking era. IoT is going through the peak of inflated expectations and the need for security of these interconnected devices is also

increasing. IoT is a fusion of heterogeneous networks which involves many kinds of security and privacy issues. When nearly 25 billion devices are connected, this constant exposure of things will divulge security flaws and vulnerabilities to the hackers and the weaknesses may be mistreated in the IoT environment. The world of IoT includes wide range of devices and diverse applications, which are deployed in different scenarios and the security requirements of these devices, differ in each paradigm. Therefore, new security and privacy issues arise and resolving these issues might create a better world for the IoT environment.


II. SECURITY REQUIREMENTS OF IOT ^{[3][7]}

- A. Confidentiality: Confidentiality ensures that the data is accessible only by authorised users all over the process and not tampered or eavesdropped by unauthorized users. A loss of confidentiality is termed as unauthorised disclosure of information. When large numbers of IoT devices are integrated, Confidentiality of these connected things becomes a major necessity.
- B. Integrity: Integrity ensures the data transmitted over networks, is not tampered by any 3rd party and provides data accuracy for authorized users in the long run. If the data transmitted is forged or tampered then the erroneous data will be received and wrong feedbacks will further disrupt the IoT operations. A loss of integrity means that the unauthorised modification or destruction of data.
- C. Availability: When the data and devices are available when users request it, availability can be ensured. Services cannot be scheduled if they are not provided to the user in a timely manner. Nowadays, Denial of Service (DoS) is the one of the most common attacks. A loss of availability is when the service access is interrupted and information cannot be obtained.
- D. Identification and Authentication:

Identification ensures that only authorised devices and applications can connect to network of things. Authentication assures that the data distributed in the network are genuine to the devices or applications. Cisco^[4] has reported that by 2020 there will be 50 Billion devices interconnected in the IoT network. Identifying and authenticating each and every device is a major challenge in the IoT environment. Thus, each input arriving at an IoT device should be from a trusted source.

E. Privacy: Individuals have entire control of the data collected and stored related to them. They are decisive and influential over whom the information must be disclosed to. Privacy ensures full control over data corresponding to user but restricts control over information received. Privacy is one of the key objectives of Security since all the devices existing in the IoT environment share the same communication network. F. Trust: Trust is the basis of all the above-mentioned security and privacy objectives. This is achieved through all the IoT layers and applications. The End-to-End Trust covering trust between devices, trust between all the IoT layers, trust between devices and applications, and altogether enforces trust as a whole in the IoT environment.

III. IoT SECURITY ARCHITECTURE

FIG. 1. GENERIC ARCHITECTURE OF IOT

Generally, 3 key layers form the IoT Architecture as given in above Fig. 1, which is described below.^[9]

A. Perception Layer:

It is also called as the sensing layer, which is the lowest layer in IoT architecture. The main concern of this layer is to interact with physical devices and components through different kinds of RFID (Radio Frequency IDentification), sensor networks and Barcodes^{[5][6]}. The basic purpose of the layer is the intelligent connectivity between sensor nodes facilitates the exchange of information.

As the perception layer in IoT focuses on collection and processing of data, forging of data is a vital threat which is discussed below in Table I.^{[8][9]}

Security Threats	Description	Countermeasures	
Unauthorised Access to the	Lack of proper authentication	Enforce strong	
Tags	mechanism of RFID tags or	Authentication	
	systems, they may be accessed by	mechanisms.	
	unauthorised users. The data can		
	be read, altered and even deleted.		
Tag Cloning/ Node Capture	Tags are visible and can be read		
Attacks/ node replication	and modified easily, the attacker		
attack	creates a replica of the tag and the		
	reader may fail in distinguishing		

TABLE I SECURITY ISSUES IN PERCEPTION LAYER.

	1	
	between the original and the	Effective schemes
	compromised tag.	are to be built to
Spoofing	By broadcasting false information	monitor & detect
	to the systems and making it look	malicious nodes.
	like as if it has originated from	
	trusted source and the attacker	
	can gain access of the entire	
	system and makes it vulnerable.	
Eavesdropping	The data flow between the tag-	Improvised multi-
	reader or reader-tag is wireless	level secure
	and the attacker sniffs the	encryption
	information such as passwords	algorithms and
	and attacks the device.	quantum proof key
		management
		schemes are required.
Malicious code Injection	When unauthorised access to	Effective code
Attacks	node is made the attacker injects	authentication
	malicious code to the memory of	schemes are required.
	the system and gains full control	
	over the system.	
False Data Injection Attacks	Attacker may inject false data in	False data cleaning
	the place of original data and may	schemes to sense and
	transmit the false data and may	drop false
	lead to IoT applications returning	information before it
	false services and erroneous	reaches the end point
	commands.	devices is required.
Replay Attacks/ Freshness	The attacker node may transmit	Secure time stamp
Attacks	false data to the destination host	schemes need to be
	with genuine identity and repeats	built in.
	the same process in the network	
	to obtain trust in the network.	
Cryptanalysis Attacks	During cryptanalysis, the attacker	Enhanced end to end
	looks for vulnerabilities and	security mechanisms
	information leaks and uses the	for encryption and
	cipher text or the plaintext to	key management are
	acquire the encryption key used in	good alternatives.
	the encryption algorithm.	
Side Channel Attacks	The attacker targets data by	Eliminating data
	exploiting information related to	leaks and unlinking
	execution and compromises the	the secrecy in the
	system.	information.
Sleep Deprivation Attacks	In IoT network, most of the	Nodes can be
	devices are low powered with	provided with energy
	short lifecycle. So, the devices are	from the external
1577	http://www.webology.org	I

automated to follow some sleep	environment and
sequences to lessen the power	Duty-cycle
consumption in order to extend	mechanisms can be
the life cycle. The attacker breaks	built in.
through these sleep routines and	
keeps the devices awake so that	
they can shut down soon.	

B. Network Layer:

The network layer comprises of Wireless Sensor Networks (WSN) which transfer data collected from sensor devices to its destination. This is the most targeted layer among the WSN, since they depend mostly on secure routing and privacy of data being transmitted. Threats may compromise the devices in the entire network and this is a major challenge in IoT environment. As the network layer in IoT focuses data transmission, forging of identities, loss of data are major concerns which are discussed in Table II.^{[4][8][9]}

TABLE II SECURITY ISSUES IN NETWORK LAYER

Security Threats	Description	Countermeasures
Sybil Attack	Here the attacker creates	An intelligent identity
	many false identities for a	management mechanism
	single node and the system	is to be followed.
	results in false information	
	about redundancy.	
Sinkhole Attack	The adversary attracts the	Multiple routing
	neighbour nodes and diverts	protocols with higher
	all attention towards the	level security needs to be
	compromised node.	applied.
Denial of Service(DoS)	DoS attacks devour all the	The attacking schemes in
	available resources in IoT and	DoS attack need to be
	then attack the network or investigated to provi	
	bombard the IoT network efficient defensi	
	with enormous traffic, making	schemes to mitigate the
	the requested services attacks.	
	unavailable to the IoT	
	systems.	
Malicious Insider	This attack befalls when	Techniques to detect and
	someone from the inside	eliminate nodes whose
	tampers with the data seeking	energy, packet delivery
	some personal benefits or for	ratio, throughput have
	the benefits of any 3rd party.	sudden fluctuations
Malicious Scripts	Since many IoT applications	Effective Script
	and devices are always	detecting schemes are to
	connected to the internet, it is	be deployed.

	an added advantage to the adversary to run malicious scripts when the user requests for services.	
Man-in-the-Middle Attack	This attack is triggered when the attacker has full control over a malicious device and is found to be located in- between 2 communicating IoT devices ^[13] .	Efficient defence techniques are to implemented to protect against the attack by securing communication protocols and key management schemes in a manner to ensure the identity and key information of resource constrained devices from being leaked to the adversary.
Spoofing Attack	By gaining complete access over the IoT system the adversary sends malicious data into the system.	Trust management, identification and authentication should be strengthened to defend against the such attack.
Wormhole Attack	The attack arises when 2 cooperative malicious devices or IoT nodes, exchange routing related information irrespective of their locations by using private links in order to achieve one-hop transmission between them.	By enhancing the routing protocols in a way to boost the route selection process this attack can be eliminated.
Routing Information Attack	This attack focuses on routing protocols and manipulates the routing information and resends it to create route loops in the data transmission of the network	Secure routing among protocols and trust management is to be established between IoT devices through secure communication links.
Gateway attack	The connection between the sensors and the Internet infrastructure is limited or shut down by this kind of attack. This in-turn would jeopardize the internet infrastructure.	Securing the gateway with intelligent intrusion detection system

	M 1 11 14 1	
	Monitor and limit the	
	data transfer from device	
or in cloud storages. When	to device, device to	
storage attacks take place the	gateway and device.	
user data may be		
compromised.		
When an adversary-controlled	To detect the malicious	
node is decisive about the	node same packets are	
packets to forward and sends	sent through multiple	
a few but drops most of the	paths and ordering the	
packets from sender to	packets in a fashion can	
receiver then issues arise on	be done.	
unorganised packet delivery.		
The attacker's node	This could be prevented	
broadcasts Hello packets to all	by following	
other nodes in the network	bidirectional verification	
and when the nodes receive	and verifying if the	
this hello packet, they assume	sender is in the radio	
that the sender is a neighbour	range or not.	
node and adds it in its routing		
table.		
When the attacker node	This can be prevented by	
spoofs the ACK packet on	encrypting the message	
overhearing packets being	and by verifying the	
delivered to a weak or dead	packets through	
node then the sender assumes	sequence numbers.	
the node sending the ACK		
packet is live and in range.		
	storage attacks take place the user data may be compromised. When an adversary-controlled node is decisive about the packets to forward and sends a few but drops most of the packets from sender to receiver then issues arise on unorganised packet delivery. The attacker's node broadcasts Hello packets to all other nodes in the network and when the nodes receive this hello packet, they assume that the sender is a neighbour node and adds it in its routing table. When the attacker node spoofs the ACK packet on overhearing packets being delivered to a weak or dead node then the sender assumes the node sending the ACK	

c. Application Layer:

The responsibility of this layer is to provide all the user requested services on time. Each device has its own software and hardware vulnerabilities which make it prone to attacks. They should be power efficient and should recharge quickly so as to keep the device active.

As the application layer in IoT relies on device constraints and offering user services, delay in rendering the services to all types of devices is a drawback which is discussed in Table III [8][9]

TABLE IIISECURITY ISSUES IN APPLICATION LAYER

Security Threat	Description	Countermeasure
-----------------	-------------	----------------

Jamming	The adversary interrupts the	The spread spectrum
	radio signals and cuts off the	techniques can be
	communication channel	deployed.
	between the devices and	
	network causing congestion in	
	the communication channels.	
Loss of Power	IoT devices operate on low	Power saving modes,
	power environments since they	hibernation modes can
	have resource constraints. The	be used as an
	battery life is important to keep	alternative.
	the device active.	
Physical tampering	Tampering the devices and	Self-destructive nodes
	causing damage to it by	can be designed to
	replacing the device physically,	destroy all memory
	extracting essential data and	once the device is being
	controlling the device is	tampered.
	possible.	
Malicious Code Injection	The attacker may use all	Restrict access control
-	possible hacking techniques	and validate users' data
	and inject malicious code in	input
	the end users device.	
Denial-of-Service (DoS)	Non- encrypted personal data,	End to end encryption
Attack	messages of user can be at risk	should be enabled for
	in the hands of the	protecting user info and
	attacker/hacker.	messages.
Phishing Attack	In the phishing attack the user	Secure Authentication,
	credentials maybe spoofed by	identification and
	vulnerable site access and	Authorization may
	emails.	prevent these kinds of
		attacks.
Spear-Phishing Attack	The users' email is spoofed	Invalid login alerts and
	when the user logs in to his/her	device logged in details
	mail, the attacker overhears it	are to be provided to the
	and captures the credentials	user on each activity.
	and steals vital data of the	
	victim.	
Sniffing Attack	An attacker forcibly introduces	Enhancing firewalls to
	a sniffer into the IoT	block applications that
	application and ends up	use insecure protocols.
	corrupting the entire system.	
Malicious Virus/worm	The adversary may tamper	Firewalls and virus
	with the IoT applications by	recognition mechanisms
	triggering malicious	should be deployed.
	proliferation attacks such as	
581	http://www.webology.org	1

worms, horse, trojan etc., and	
alter user's confidential data.	

IV. SECURITY CONSIDERATIONS FOR IOT

There are many solutions available but the most viable and efficient ones will always grow as the trend and new security issues rise. A few specific security considerations to strengthen the IoT devices are given below.^{[10][11]}

- a. Identification and Authentication: Global ID schemes which eliminate the traditional centralised nature will be an effective alternate to be considered when intelligent objects and humans interact. Also, effective identity management approaches which are distributed and decentralised should be developed. Further open research challenges exist in areas such as mobility, privacy, pseudonymity, anonymity aspects need deeper.
- b. Privacy: Automating key management scheme is very sensitive and still a booming issue when it comes to privacy concern in IoT. It encompasses key provisioning, updating, revocation, transporting and key agreement. Non-cryptographic operations like enrolment, backup and recovery, firmware updates should be addressed to achieve high level of security. Also, open grounds to develop new schemes using blockchain based smart contracts for asymmetric key management including generation, validation and distribution. This in turn will achieve decentralised public key Infrastructure and enhanced CIA (Confidentiality, Integrity, Availability) metrics.
- c. Architecture Standards: IoT is in the verge of defining a self-sovereign environment which comprises of data models, interfaces, and protocols which can support a wide range of heterogenous devices, operating systems and languages.
- d. New security challenges and applications of lightweight cryptography, threshold cryptography, blockchain solutions for IoT needs to be inculcated further.

From the above study made the conclusive requirements and countermeasures are summarized in the table IV for each layer.^[12]

IoT Layer	Task	Key	Security	Security	Countermeasures
	Performed	Components	Issues	Requirements	
Perception	Collection of	Smart Card,	Security of	 Lightweight 	 Lightweight
Layer	Data from	RFID tag,	the sensor	Encryption	encryption
	various end	Sensor	networks	 Access Control 	schemes are to
	devices	Networks		 Data structures 	be developed.
				and format	• Protecting
					sensor data
					• Key agreements

TABLE IV. SUMMARY TABLE OF IOT SECURITY CONSIDERATIONS

Network	Transmission	Wired or	Security	• Communication,	• Identity
Layer	of Data	Wireless	during data	Routing and	authentication
		network	transmission	Connectivity	 Encryption
				Security	mechanism
				 Mechanisms for 	Anti DDoS
				Cross-domain	measures
				Data Security	 Communication
				Handling	security policies
				• Secure	
				Sensor/Cloud	
				Interaction	
Application	Data	Intelligent	Security	Privacy	 Authentication
Layer	Analysis and	devices and	while	Protection and	and key
	Decision	applications	processing	Policy	agreement
	Making		data	Management	Privacy
				 Application- 	protection
				specific Data	mechanisms
				Minimization	• Security
				• Authentication	education and
				measures	management
				 Application 	techniques
				specific	• End to End
				encryption,	Encryption.
				cryptography.	
				• Authorization,	
				Assurance	

V. CONCLUSION

Today's IoT devices are insecure and not efficient enough to defend themselves. The hype cycle has created a fast-growing network of IoT devices and as things get smart, ways to secure them needs to be smarter. The huge amount of data being shared among these devices should be preserved with respect to the security considerations of each layer. This paper summarizes most of the attacks which occur at various layers. The countermeasures are not limited but paves way to widen the possible solutions.

REFERENCES

[1] A. Bahga and V. Madisetti, Internet of Things: A Hands-On Approach. VPT, 2014.
[2] CLIENT RESEARCH IoT's Challenges and Opportunities in 2017: A Gartner Trend Insight Report Mark Hung, April 2017. Available online : https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf [3] W. Stallings, "Cryptography and Network Security: Principles and Practice", 8th Edition p. 900.

[4] Cisco, U. "Cisco annual internet report (2018–2023) white paper." Cisco: San Jose, CA, USA (2020).

[5] Khattak, Hasan Ali, Munam Ali Shah, Sangeen Khan, Ihsan Ali, and Muhammad Imran. "Perception layer

security in Internet of Things." Future Generation Computer Systems 100 (2019): 144-164. [6] V. Adat and B. B. Gupta, "Security in Internet of Things: issues, challenges, taxonomy, and architecture", Telecommun. Syst., vol. 67, no. 3, pp. 423–441, Mar. 2018.

[7] Čolaković, Alem, and Mesud Hadžialić. "Internet of Things (IoT): A review of enabling technologies,

challenges, and open research issues." Computer networks 144 (2018): 17-39.

[8] Ahmad, Mudassar, Tanveer Younis, Muhammad Asif Habib, Rehan Ashraf, and Syed Hassan Ahmed. "A

review of current security issues in Internet of Things." Recent trends and advances in wireless and IoT-

enabled networks (2019): 11-23.

[9] Abdullah, Aishah, Reem Hamad, Mada Abdulrahman, Hanan Moala, and Salim Elkhediri. "Cyber Security: a

review of Internet of Things (IoT) security issues, challenges and techniques." In 2019 2nd International

Conference on Computer Applications & Information Security (ICCAIS), pp. 1-6. IEEE, 2019.

[10] W. Zhou, Y. Jia, A. Peng, Y. Zhang, and P. Liu, "The Effect of IoT New Features on Security and Privacy:

New Threats, Existing Solutions, and Challenges Yet to Be Solved," IEEE Internet Things J., vol. 6, no. 2,

pp. 1606–1616, Apr. 2019.

[11] B. Javed, M. W. Iqbal, and H. Abbas, "Internet of things (IoT) design considerations for developers and

manufacturers," in 2017 IEEE International Conference on Communications Workshops (ICC Workshops),

Paris, France, 2017, pp. 834–839.

[12] Bashir, Adil, and Ajaz Hussain Mir. "Internet of things security issues, threats, attacks and counter

measures." International Journal of Computing and Digital Systems 7, no. 02 (2018): 111-120.

[13] Prathibha, L., and Kaleem Fatima. "Exploring Security and Authentication Issues in Internet of Things."

In 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), pp.

673-678. IEEE, 2018.